In situ spatial organization of Potato virus A coat protein subunits as assessed by tritium bombardment.
نویسندگان
چکیده
Potato virus A (PVA) particles were bombarded with thermally activated tritium atoms, and the intramolecular distribution of the label in the amino acids of the coat protein was determined to assess their in situ steric accessibility. This method revealed that the N-terminal 15 amino acids of the PVA coat protein and a region comprising amino acids 27 to 50 are the most accessible at the particle surface to labeling with tritium atoms. A model of the spatial arrangement of the PVA coat protein polypeptide chain within the virus particle was derived from the experimental data obtained by tritium bombardment combined with predictions of secondary-structure elements and the principles of packing alpha-helices and beta-structures in proteins. The model predicts three regions of tertiary structure: (i) the surface-exposed N-terminal region, comprising an unstructured N terminus of 8 amino acids and two beta-strands, (ii) a C-terminal region including two alpha-helices, as well as three beta-strands that form a two-layer structure called an abCd unit, and (iii) a central region comprising a bundle of four alpha-helices in a fold similar to that found in tobacco mosaic virus coat protein. This is the first model of the three-dimensional structure of a potyvirus coat protein.
منابع مشابه
Heterologous Expression of Potato Virus Y Coat Protein, Isolate Pot187
Background: The advent of recombinant DNA technology has facilitated heterologous expression of proteins from various sources in different host systems including Escherichia coli. If a plant virus coat protein is expressed in the bacterium it can be used as the antigen for antibody preparation. Such a recombinant antigen preparation can be particularly useful where equipment such as ultracentri...
متن کاملInduction of Resistance to Potato Virus Y (PVY) Using Hairpin Construct of Coat Protein
Potato virus Y (PVY) is one of the most damaging viruses of potato plants which infecting most cultivars and causing significant yield and economical losses. The application of the concept of pathogen derived resistance opened new horizons for the development of virus-resistant plants. This research was carried out to study RNA silencing to engineered potato plants that are resistant to potato ...
متن کاملThe in situ spatial arrangement of the influenza A virus matrix protein M1 assessed by tritium bombardment.
Intact influenza A virions were bombarded with thermally activated tritium atoms, and the intramolecular distribution of the label in the matrix protein M1 was analyzed to determine the in situ accessibility of its tryptic fragments. These data were combined with the previously reported x-ray crystal structure of the M1 fragment 2-158 [Sha, B. & Luo, M. (1997) Nat. Struct. Biol. 4, 239-244] and...
متن کاملCap analog and Potato virus A HC-Pro silencing suppressor improve GFP transient expression using an infectious virus vector in Nicotiana benthamiana
Transient expression of proteins in plants has become a choice to facilitate recombinant protein production with its fast and easy application. On the other hand, host defensive mechanisms have been reported to reduce the efficiency of transient expression in plants. Hence, this study was designed to evaluate the effect of cap analog and Potato virus A helper component proteinase (PVA HC-Pro) o...
متن کاملTransient expression of coding and non-coding regions of PVY confer resistance to virus infection
One of the most efficient mechanisms by which plants protect themselves from invading virusesis the specific RNA-dependent silencing pathway termed post-transcriptional gene silencing(PTGS). In this mechanism, resistance to a virus is engineered through the expression of asegment of the virus genomein transgenic plants. Potato VirusY (PVY) is one of the mostdamaging viruses of potato, infecting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 75 20 شماره
صفحات -
تاریخ انتشار 2001